265 research outputs found

    The DICEMAN description schemes for still images and video sequences

    Get PDF
    To address the problem of visual content description, two Description Schemes (DSs) developed within the context of a European ACTS project known as DICEMAN, are presented. The DSs, designed based on an analogy with well-known tools for document description, describe both the structure and semantics of still images and video sequences. The overall structure of both DSs including the various sub-DSs and descriptors (Ds) of which they are composed is described. In each case, the hierarchical sub-DS for describing structure can be constructed using automatic (or semi-automatic) image/video analysis tools. The hierarchical sub-DSs for describing the semantics, however, are constructed by a user. The integration of the two DSs into a video indexing application currently under development in DICEMAN is also briefly described.Peer ReviewedPostprint (published version

    A Learning Framework for Morphological Operators using Counter-Harmonic Mean

    Full text link
    We present a novel framework for learning morphological operators using counter-harmonic mean. It combines concepts from morphology and convolutional neural networks. A thorough experimental validation analyzes basic morphological operators dilation and erosion, opening and closing, as well as the much more complex top-hat transform, for which we report a real-world application from the steel industry. Using online learning and stochastic gradient descent, our system learns both the structuring element and the composition of operators. It scales well to large datasets and online settings.Comment: Submitted to ISMM'1

    Morphological operators for very low bit rate video coding

    Get PDF
    This paper deals with the use of some morphological tools for video coding at very low bit rates. Rather than describing a complete coding algorithm, the purpose of this paper is to focus on morphological connected operators and segmentation tools that have proved to be attractive for compression.Peer ReviewedPostprint (published version

    A Fast, Memory-Efficient Alpha-Tree Algorithm using Flooding and Tree Size Estimation

    Get PDF
    The alpha-tree represents an image as hierarchical set of alpha-connected components. Computation of alpha-trees suffers from high computational and memory requirements compared with similar component tree algorithms such as max-tree. Here we introduce a novel alpha-tree algorithm using 1) a flooding algorithm for computational efficiency and 2) tree size estimation (TSE) for memory efficiency. In TSE, an exponential decay model was fitted to normalized tree sizes as a function of the normalized root mean squared deviation (NRMSD) of edge-dissimilarity distributions, and the model was used to estimate the optimum memory allocation size for alpha-tree construction. An experiment on 1256 images shows that our algorithm runs 2.27 times faster than Ouzounis and Soille's thanks to the flooding algorithm, and TSE reduced the average memory allocation of the proposed algorithm by 40.4%, eliminating unused allocated memory by 86.0% with a negligible computational cost

    Hyperspectral Image Representation and Processing With Binary Partition Trees

    Full text link

    Constructive links between some morphological hierarchies on edge-weighted graphs

    Get PDF
    International audienceIn edge-weighted graphs, we provide a unified presentation of a family of popular morphological hierarchies such as component trees, quasi flat zones, binary partition trees, and hierarchical watersheds. For any hierarchy of this family, we show if (and how) it can be obtained from any other element of the family. In this sense, the main contribution of this paper is the study of all constructive links between these hierarchies

    A history of transurethral resection of the prostate should not be a contra-indication for low-dose-rate 125I prostate brachytherapy: results of a prospective Uro-GEC phase-II trial

    Get PDF
    Purpose Early reports suggested that transurethral resection (TURP) prior to permanent seed brachytherapy (BT) results in high incontinence rates. Guidelines consider prior TURP as a contra-indication to treatment, but improvements in imaging and treatment planning may reduce this risk, and are investigated in this prospective study. Material and methods 99 men with histologically proven low- to intermediate-risk, localized prostate cancer, with a history of TURP performed at least 3 months before BT procedure were enrolled. All patients received a permanent seed implant between March 2009 and June 2015. Intra-operative interactive planning was recommended to ensure optimal accuracy of seed placement during the procedure. No supplemental external beam was allowed. Target and organ at risk contouring, definition of clinical target volume (CTV), and dosimetric parameters followed the modified GEC-ESTRO guidelines for permanent seed implants, as described an earlier report of our group. Follow-up was scheduled every 3 months for the first year, and every 6 months afterwards, with minimum follow-up of 2 years. Study endpoints the primary endpoint was the incidence of post-implant urinary incontinence. Secondary endpoints were the incidence of urinary and gastro-intestinal toxicity, the eventual impact on the sexual function, and the freedom from biochemical failure. Results The median follow-up time for these 99 patients was 49 months (min. 24, max. 96). In this series, the incontinence rate was 2% after TURP + BT and 2% in case of TURP + BT + re-TURP, ending up with a total urinary incontinence rate of 4%. Acute and late urinary toxicities were extremely low. No significant late gastro-intestinal toxicity was seen, and the 5-year biochemical non-evidence of disease (bNED) was 93%. Conclusions The excellent long-term results and low morbidity presented as well as many advantages of prostate brachytherapy over other treatments demonstrates that brachytherapy is an effective treatment for patients with transurethral resection and organ-confined prostate cancer

    A study of observation scales based on Felzenswalb-Huttenlocher dissimilarity measure for hierarchical segmentation

    Get PDF
    International audienceHierarchical image segmentation provides a region-oriented scale-space, i.e., a set of image segmentations at different detail levels in which the segmentations at finer levels are nested with respect to those at coarser levels. GuimarĂŁes et al. proposed a hierarchical graph based image segmentation (HGB) method based on the Felzenszwalb-Huttenlocher dissimilarity. This HGB method computes, for each edge of a graph, the minimum scale in a hierarchy at which two regions linked by this edge should merge according to the dissimilarity. In order to generalize this method, we first propose an algorithm to compute the intervals which contain all the observation scales at which the associated regions should merge. Then, following the current trend in mathematical morphology to study criteria which are not increasing on a hierarchy, we present various strategies to select a significant observation scale in these intervals. We use the BSDS dataset to assess our observation scale selection methods. The experiments show that some of these strategies lead to better segmentation results than the ones obtained with the original HGB method

    Climbing: A Unified Approach for Global Constraints on Hierarchical Segmentation

    Get PDF
    International audienceThe paper deals with global constraints for hierarchical segmentations. The proposed framework associates, with an input image, a hierarchy of segmentations and an energy, and the subsequent optimization problem. It is the first paper that compiles the different global constraints and unifies them as Climbing energies. The transition from global optimization to local optimization is attained by the h-increasingness property, which allows to compare parent and child partition energies in hierarchies. The laws of composition of such energies are established and examples are given over the Berkeley Dataset for colour and texture segmentation

    Quantification of valvular regurgitation by cardiac blood pool scintigraphy: correlation with catheterization

    Get PDF
    The diagnosis of valvular regurgitation (R) is usually based on clinical signs. Quantification conventionally requires catheterization (C). We have quantified R with cardiac blood pool scintigraphy (CBPS) and compared the results with those obtained by C. Regurgitant fraction (RF) determined by C was calculated with the technique of Dodge. Forward output was measured by thermodilution or cardiogreen dilution. The RF at CBPS was obtained by the stroke index ratio (SIR) minus 1.2 divided by SIR, where SIR is the ratio of the stroke counts of left venticle over those of the right ventricle. Stroke counts are calculated directly from the time-activity curves. Each time-activity curve was obtained by drawing one region of interest around each diastolic image. The correction factor (1.2) was calculated from a large normal population. 22 patients had aortic R, 7 mitral R, 12 both, 8 patients had no evidence of regurgitation. RF of the patients with R varied from 27 to 71% (x = 42%) at C and from 26 to 74% (Y = 41%) at CBPS. Linear regression shows a good correlation coefficient (r = 0.82). The regression equation is y = 0.93x + 1.8. No correlation was found between RF (CBPS or C) and the severity of R assessed visually from angiography. In conclusion: CBPS, a non-invasive method, allows easy and repeatable determination of RF and correlates well with data obtained at catheterizatio
    • …
    corecore